TSPTQ-ViT: Two-scaled post-training quantization for vision transformer

22 May 2023  ·  Yu-Shan Tai, Ming-Guang Lin, An-Yeu, Wu ·

Vision transformers (ViTs) have achieved remarkable performance in various computer vision tasks. However, intensive memory and computation requirements impede ViTs from running on resource-constrained edge devices. Due to the non-normally distributed values after Softmax and GeLU, post-training quantization on ViTs results in severe accuracy degradation. Moreover, conventional methods fail to address the high channel-wise variance in LayerNorm. To reduce the quantization loss and improve classification accuracy, we propose a two-scaled post-training quantization scheme for vision transformer (TSPTQ-ViT). We design the value-aware two-scaled scaling factors (V-2SF) specialized for post-Softmax and post-GeLU values, which leverage the bit sparsity in non-normal distribution to save bit-widths. In addition, the outlier-aware two-scaled scaling factors (O-2SF) are introduced to LayerNorm, alleviating the dominant impacts from outlier values. Our experimental results show that the proposed methods reach near-lossless accuracy drops (<0.5%) on the ImageNet classification task under 8-bit fully quantized ViTs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods