UAlacant machine translation quality estimation at WMT 2018: a simple approach using phrase tables and feed-forward neural networks

WS 2018 Miquel Esplà-GomisFelipe Sánchez-MartínezMikel L. Forcada

We describe the Universitat d'Alacant submissions to the word- and sentence-level machine translation (MT) quality estimation (QE) shared task at WMT 2018. Our approach to word-level MT QE builds on previous work to mark the words in the machine-translated sentence as \textit{OK} or \textit{BAD}, and is extended to determine if a word or sequence of words need to be inserted in the gap after each word... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet