Uncertainty-aware data-driven predictive control in a stochastic setting

18 Nov 2022  ·  Valentina Breschi, Marco Fabris, Simone Formentin, Alessandro Chiuso ·

Data-Driven Predictive Control (DDPC) has been recently proposed as an effective alternative to traditional Model Predictive Control (MPC), in that the same constrained optimization problem can be addressed without the need to explicitly identify a full model of the plant. However, DDPC is built upon input/output trajectories. Therefore, the finite sample effect of stochastic data, due to, e.g., measurement noise, may have a detrimental impact on closed-loop performance. Exploiting a formal statistical analysis of the prediction error, in this paper we propose the first systematic approach to deal with uncertainty due to finite sample effects. To this end, we introduce two regularization strategies for which, differently from existing regularization-based DDPC techniques, we propose a tuning rationale allowing us to select the regularization hyper-parameters before closing the loop and without additional experiments. Simulation results confirm the potential of the proposed strategy when closing the loop.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here