Unconsciousness reconfigures modular brain network dynamics

The dynamic core hypothesis posits that consciousness is correlated with simultaneously integrated and differentiated assemblies of transiently synchronized brain regions. We represented time-dependent functional interactions using dynamic brain networks, and assessed the integrityof the dynamic core by means of the flexibility and largest multilayer module of these networks. As a first step, we constrained parameter selection using a newly developed benchmark for module detection in heterogeneous temporal networks. Next, we applied a multilayer modularity maximization algorithm to dynamic brain networks computed from functional magnetic resonance imaging (fMRI) data acquired during deep sleep and under propofol anesthesia. We found that unconsciousness reconfigured network flexibility and reduced the size of the largest spatiotemporal module, which we identified with the dynamic core. Our results present a first characterization of modular brain network dynamics during states of unconsciousness measured with fMRI, adding support to the dynamic core hypothesis of human consciousness.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here