Unconstrained Parameterization of Stable LPV Input-Output Models: with Application to System Identification

Ensuring stability of discrete-time (DT) linear parameter-varying (LPV) input-output (IO) models estimated via system identification methods is a challenging problem as known stability constraints can only be numerically verified, e.g., through solving Linear Matrix Inequalities. In this paper, an unconstrained DT-LPV-IO parameterization is developed which gives a stable model for any choice of model parameters. To achieve this, it is shown that all quadratically stable DT-LPV-IO models can be generated by a mapping of transformed coefficient functions that are constrained to the unit ball, i.e., a small-gain condition. The unit ball is then reparameterized through a Cayley transformation, resulting in an unconstrained parameterization of all quadratically stable DT-LPV-IO models. As a special case, an unconstrained parameterization of all stable DT linear time-invariant transfer functions is obtained. Identification using the stable DT-LPV-IO model with neural network coefficient functions is demonstrated on a simulation example of a position-varying mass-damper-spring system.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here