Uncovering hidden geometry in Transformers via disentangling position and context

7 Oct 2023  ·  Jiajun Song, Yiqiao Zhong ·

Transformers are widely used to extract semantic meanings from input tokens, yet they usually operate as black-box models. In this paper, we present a simple yet informative decomposition of hidden states (or embeddings) of trained transformers into interpretable components. For any layer, embedding vectors of input sequence samples are represented by a tensor $\boldsymbol{h} \in \mathbb{R}^{C \times T \times d}$. Given embedding vector $\boldsymbol{h}_{c,t} \in \mathbb{R}^d$ at sequence position $t \le T$ in a sequence (or context) $c \le C$, extracting the mean effects yields the decomposition \[ \boldsymbol{h}_{c,t} = \boldsymbol{\mu} + \mathbf{pos}_t + \mathbf{ctx}_c + \mathbf{resid}_{c,t} \] where $\boldsymbol{\mu}$ is the global mean vector, $\mathbf{pos}_t$ and $\mathbf{ctx}_c$ are the mean vectors across contexts and across positions respectively, and $\mathbf{resid}_{c,t}$ is the residual vector. For popular transformer architectures and diverse text datasets, empirically we find pervasive mathematical structure: (1) $(\mathbf{pos}_t)_{t}$ forms a low-dimensional, continuous, and often spiral shape across layers, (2) $(\mathbf{ctx}_c)_c$ shows clear cluster structure that falls into context topics, and (3) $(\mathbf{pos}_t)_{t}$ and $(\mathbf{ctx}_c)_c$ are mutually nearly orthogonal. We argue that smoothness is pervasive and beneficial to transformers trained on languages, and our decomposition leads to improved model interpretability.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here