Uncovering solutions from data corrupted by systematic errors: A physics-constrained convolutional neural network approach

7 Jun 2023  ·  Daniel Kelshaw, Luca Magri ·

Information on natural phenomena and engineering systems is typically contained in data. Data can be corrupted by systematic errors in models and experiments. In this paper, we propose a tool to uncover the spatiotemporal solution of the underlying physical system by removing the systematic errors from data. The tool is the physics-constrained convolutional neural network (PC-CNN), which combines information from both the systems governing equations and data. We focus on fundamental phenomena that are modelled by partial differential equations, such as linear convection, Burgers equation, and two-dimensional turbulence. First, we formulate the problem, describe the physics-constrained convolutional neural network, and parameterise the systematic error. Second, we uncover the solutions from data corrupted by large multimodal systematic errors. Third, we perform a parametric study for different systematic errors. We show that the method is robust. Fourth, we analyse the physical properties of the uncovered solutions. We show that the solutions inferred from the PC-CNN are physical, in contrast to the data corrupted by systematic errors that does not fulfil the governing equations. This work opens opportunities for removing epistemic errors from models, and systematic errors from measurements.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods