Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation

ACL 2021  ·  Mathias Müller, Rico Sennrich ·

Neural Machine Translation (NMT) currently exhibits biases such as producing translations that are too short and overgenerating frequent words, and shows poor robustness to copy noise in training data or domain shift. Recent work has tied these shortcomings to beam search -- the de facto standard inference algorithm in NMT -- and Eikema & Aziz (2020) propose to use Minimum Bayes Risk (MBR) decoding on unbiased samples instead. In this paper, we empirically investigate the properties of MBR decoding on a number of previously reported biases and failure cases of beam search. We find that MBR still exhibits a length and token frequency bias, owing to the MT metrics used as utility functions, but that MBR also increases robustness against copy noise in the training data and domain shift.

PDF Abstract ACL 2021 PDF ACL 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here