Une mesure d'expertise pour le crowdsourcing

17 Jan 2017  ·  Hosna Ouni, Arnaud Martin, Laetitia Gros, Mouloud Kharoune, Zoltan Miklos ·

Crowdsourcing, a major economic issue, is the fact that the firm outsources internal task to the crowd. It is a form of digital subcontracting for the general public. The evaluation of the participants work quality is a major issue in crowdsourcing. Indeed, contributions must be controlled to ensure the effectiveness and relevance of the campaign. We are particularly interested in small, fast and not automatable tasks. Several methods have been proposed to solve this problem, but they are applicable when the "golden truth" is not always known. This work has the particularity to propose a method for calculating the degree of expertise in the presence of gold data in crowdsourcing. This method is based on the belief function theory and proposes a structuring of data using graphs. The proposed approach will be assessed and applied to the data.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here