Unified Uncertainty Calibration

2 Oct 2023  ·  Kamalika Chaudhuri, David Lopez-Paz ·

To build robust, fair, and safe AI systems, we would like our classifiers to say ``I don't know'' when facing test examples that are difficult or fall outside of the training classes.The ubiquitous strategy to predict under uncertainty is the simplistic \emph{reject-or-classify} rule: abstain from prediction if epistemic uncertainty is high, classify otherwise.Unfortunately, this recipe does not allow different sources of uncertainty to communicate with each other, produces miscalibrated predictions, and it does not allow to correct for misspecifications in our uncertainty estimates. To address these three issues, we introduce \emph{unified uncertainty calibration (U2C)}, a holistic framework to combine aleatoric and epistemic uncertainties. U2C enables a clean learning-theoretical analysis of uncertainty estimation, and outperforms reject-or-classify across a variety of ImageNet benchmarks. Our code is available at: https://github.com/facebookresearch/UnifiedUncertaintyCalibration

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here