Uniqueness of Belief Propagation on Signed Graphs

NeurIPS 2011  ·  Yusuke Watanabe ·

While loopy Belief Propagation (LBP) has been utilized in a wide variety of applications with empirical success, it comes with few theoretical guarantees. Especially, if the interactions of random variables in a graphical model are strong, the behaviors of the algorithm can be difficult to analyze due to underlying phase transitions. In this paper, we develop a novel approach to the uniqueness problem of the LBP fixed point; our new “necessary and sufficient” condition is stated in terms of graphs and signs, where the sign denotes the types (attractive/repulsive) of the interaction (i.e., compatibility function) on the edge. In all previous works, uniqueness is guaranteed only in the situations where the strength of the interactions are “sufficiently” small in certain senses. In contrast, our condition covers arbitrary strong interactions on the specified class of signed graphs. The result of this paper is based on the recent theoretical advance in the LBP algorithm; the connection with the graph zeta function.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here