Universal Bayes consistency in metric spaces

24 Jun 2019  ·  Steve Hanneke, Aryeh Kontorovich, Sivan Sabato, Roi Weiss ·

We extend a recently proposed 1-nearest-neighbor based multiclass learning algorithm and prove that our modification is universally strongly Bayes-consistent in all metric spaces admitting any such learner, making it an "optimistically universal" Bayes-consistent learner. This is the first learning algorithm known to enjoy this property; by comparison, the $k$-NN classifier and its variants are not generally universally Bayes-consistent, except under additional structural assumptions, such as an inner product, a norm, finite dimension, or a Besicovitch-type property. The metric spaces in which universal Bayes consistency is possible are the "essentially separable" ones -- a notion that we define, which is more general than standard separability. The existence of metric spaces that are not essentially separable is widely believed to be independent of the ZFC axioms of set theory. We prove that essential separability exactly characterizes the existence of a universal Bayes-consistent learner for the given metric space. In particular, this yields the first impossibility result for universal Bayes consistency. Taken together, our results completely characterize strong and weak universal Bayes consistency in metric spaces.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here