Universal Regular Conditional Distributions

17 May 2021  ·  Anastasis Kratsios ·

We introduce a deep learning model that can universally approximate regular conditional distributions (RCDs). The proposed model operates in three phases: first, it linearizes inputs from a given metric space $\mathcal{X}$ to $\mathbb{R}^d$ via a feature map, then a deep feedforward neural network processes these linearized features, and then the network's outputs are then transformed to the $1$-Wasserstein space $\mathcal{P}_1(\mathbb{R}^D)$ via a probabilistic extension of the attention mechanism of Bahdanau et al.\ (2014). Our model, called the \textit{probabilistic transformer (PT)}, can approximate any continuous function from $\mathbb{R}^d $ to $\mathcal{P}_1(\mathbb{R}^D)$ uniformly on compact sets, quantitatively. We identify two ways in which the PT avoids the curse of dimensionality when approximating $\mathcal{P}_1(\mathbb{R}^D)$-valued functions. The first strategy builds functions in $C(\mathbb{R}^d,\mathcal{P}_1(\mathbb{R}^D))$ which can be efficiently approximated by a PT, uniformly on any given compact subset of $\mathbb{R}^d$. In the second approach, given any function $f$ in $C(\mathbb{R}^d,\mathcal{P}_1(\mathbb{R}^D))$, we build compact subsets of $\mathbb{R}^d$ whereon $f$ can be efficiently approximated by a PT.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here