Universality Patterns in the Training of Neural Networks

17 May 2019  ·  Raghav Somani, Navin Goyal, Prateek Jain, Praneeth Netrapalli ·

This paper proposes and demonstrates a surprising pattern in the training of neural networks: there is a one to one relation between the values of any pair of losses (such as cross entropy, mean squared error, 0/1 error etc.) evaluated for a model arising at (any point of) a training run. This pattern is universal in the sense that this one to one relationship is identical across architectures (such as VGG, Resnet, Densenet etc.), algorithms (SGD and SGD with momentum) and training loss functions (cross entropy and mean squared error).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here