Universalization of any adversarial attack using very few test examples

18 May 2020Sandesh KamathAmit DeshpandeK V Subrahmanyam

Deep learning models are known to be vulnerable not only to input-dependent adversarial attacks but also to input-agnostic or universal adversarial attacks. Dezfooli et al. \cite{Dezfooli17,Dezfooli17anal} construct universal adversarial attack on a given model by looking at a large number of training data points and the geometry of the decision boundary near them... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet