Unlocking Inverse Problems Using Deep Learning: Breaking Symmetries in Phase Retrieval
In many physical systems, inputs related by intrinsic system symmetries generate the same output. So when inverting such systems, an input is mapped to multiple symmetry-related outputs. This causes fundamental difficulty in tackling these inverse problems by the emerging end-to-end deep learning approach. Taking phase retrieval as an illustrative example, we show that careful symmetry breaking on the training data can help get rid of the difficulty and significantly improve learning performance on real data.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here