Unobserved Local Structures Make Compositional Generalization Hard

15 Jan 2022  ·  Ben Bogin, Shivanshu Gupta, Jonathan Berant ·

While recent work has convincingly showed that sequence-to-sequence models struggle to generalize to new compositions (termed compositional generalization), little is known on what makes compositional generalization hard on a particular test instance. In this work, we investigate what are the factors that make generalization to certain test instances challenging. We first substantiate that indeed some examples are more difficult than others by showing that different models consistently fail or succeed on the same test instances. Then, we propose a criterion for the difficulty of an example: a test instance is hard if it contains a local structure that was not observed at training time. We formulate a simple decision rule based on this criterion and empirically show it predicts instance-level generalization well across 5 different semantic parsing datasets, substantially better than alternative decision rules. Last, we show local structures can be leveraged for creating difficult adversarial compositional splits and also to improve compositional generalization under limited training budgets by strategically selecting examples for the training set.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here