Unspeech: Unsupervised Speech Context Embeddings

18 Apr 2018 Benjamin Milde Chris Biemann

We introduce "Unspeech" embeddings, which are based on unsupervised learning of context feature representations for spoken language. The embeddings were trained on up to 9500 hours of crawled English speech data without transcriptions or speaker information, by using a straightforward learning objective based on context and non-context discrimination with negative sampling... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet