Paper

Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning

Recent advancements in deep learning opened new opportunities for learning a high-quality 3D model from a single 2D image given sufficient training on large-scale data sets. However, the significant imbalance between available amount of images and 3D models, and the limited availability of labeled 2D image data (i.e. manually annotated pairs between images and their corresponding 3D models), severely impacts the training of most supervised deep learning methods in practice. In this paper, driven by a novel design of adversarial networks, we have developed an unsupervised learning paradigm to reconstruct 3D models from a single 2D image, which is free of manually annotated pairwise input image and its associated 3D model. Particularly, the paradigm begins with training an adaption network via autoencoder with adversarial loss, which embeds unpaired 2D synthesized image domain with real world image domain to a shared latent vector space. Then, we jointly train a 3D deconvolutional network to transform the latent vector space to the 3D object space together with the embedding process. Our experiments verify our network's robust and superior performance in handling 3D volumetric object generation from a single 2D image.

Results in Papers With Code
(↓ scroll down to see all results)