Unsupervised Domain Adaptation: A Reality Check

30 Nov 2021  ·  Kevin Musgrave, Serge Belongie, Ser-Nam Lim ·

Interest in unsupervised domain adaptation (UDA) has surged in recent years, resulting in a plethora of new algorithms. However, as is often the case in fast-moving fields, baseline algorithms are not tested to the extent that they should be. Furthermore, little attention has been paid to validation methods, i.e. the methods for estimating the accuracy of a model in the absence of target domain labels. This is despite the fact that validation methods are a crucial component of any UDA train/val pipeline. In this paper, we show via large-scale experimentation that 1) in the oracle setting, the difference in accuracy between UDA algorithms is smaller than previously thought, 2) state-of-the-art validation methods are not well-correlated with accuracy, and 3) differences between UDA algorithms are dwarfed by the drop in accuracy caused by validation methods.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here