Towards Resolving Propensity Contradiction in Offline Recommender Learning

16 Oct 2019  ·  Yuta Saito, Masahiro Nomura ·

We study offline recommender learning from explicit rating feedback in the presence of selection bias. A current promising solution for the bias is the inverse propensity score (IPS) estimation. However, the performance of existing propensity-based methods can suffer significantly from the propensity estimation bias. In fact, most of the previous IPS-based methods require some amount of missing-completely-at-random (MCAR) data to accurately estimate the propensity. This leads to a critical self-contradiction; IPS is ineffective without MCAR data, even though it originally aims to learn recommenders from only missing-not-at-random feedback. To resolve this propensity contradiction, we derive a propensity-independent generalization error bound and propose a novel algorithm to minimize the theoretical bound via adversarial learning. Our theory and algorithm do not require a propensity estimation procedure, thereby leading to a well-performing rating predictor without the true propensity information. Extensive experiments demonstrate that the proposed approach is superior to a range of existing methods both in rating prediction and ranking metrics in practical settings without MCAR data.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here