Unsupervised Generative Adversarial Alignment Representation for Sheet music, Audio and Lyrics

29 Jul 2020 Donghuo Zeng Yi Yu Keizo Oyama

Sheet music, audio, and lyrics are three main modalities during writing a song. In this paper, we propose an unsupervised generative adversarial alignment representation (UGAAR) model to learn deep discriminative representations shared across three major musical modalities: sheet music, lyrics, and audio, where a deep neural network based architecture on three branches is jointly trained... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet