Unsupervised Learning of Predictors from Unpaired Input-Output Samples

15 Jun 2016  ·  Jianshu Chen, Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng ·

Unsupervised learning is the most challenging problem in machine learning and especially in deep learning. Among many scenarios, we study an unsupervised learning problem of high economic value --- learning to predict without costly pairing of input data and corresponding labels. Part of the difficulty in this problem is a lack of solid evaluation measures. In this paper, we take a practical approach to grounding unsupervised learning by using the same success criterion as for supervised learning in prediction tasks but we do not require the presence of paired input-output training data. In particular, we propose an objective function that aims to make the predicted outputs fit well the structure of the output while preserving the correlation between the input and the predicted output. We experiment with a synthetic structural prediction problem and show that even with simple linear classifiers, the objective function is already highly non-convex. We further demonstrate the nature of this non-convex optimization problem as well as potential solutions. In particular, we show that with regularization via a generative model, learning with the proposed unsupervised objective function converges to an optimal solution.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here