Unsupervised Learning through Prediction in a Model of Cortex

26 Dec 2014  ·  Christos H. Papadimitriou, Santosh S. Vempala ·

We propose a primitive called PJOIN, for "predictive join," which combines and extends the operations JOIN and LINK, which Valiant proposed as the basis of a computational theory of cortex. We show that PJOIN can be implemented in Valiant's model. We also show that, using PJOIN, certain reasonably complex learning and pattern matching tasks can be performed, in a way that involves phenomena which have been observed in cognition and the brain, namely memory-based prediction and downward traffic in the cortical hierarchy.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here