Coreference resolution is one of the first stages in deep language understanding and its importance has been well recognized in the natural language processing community. In this paper, we propose a generative, unsupervised ranking model for entity coreference resolution by introducing resolution mode variables. Our unsupervised system achieves 58.44% F1 score of the CoNLL metric on the English data from the CoNLL-2012 shared task (Pradhan et al., 2012), outperforming the Stanford deterministic system (Lee et al., 2013) by 3.01%.