Unsupervised Visual-Linguistic Reference Resolution in Instructional Videos

We propose an unsupervised method for reference resolution in instructional videos, where the goal is to temporally link an entity (e.g., "dressing") to the action (e.g., "mix yogurt") that produced it. The key challenge is the inevitable visual-linguistic ambiguities arising from the changes in both visual appearance and referring expression of an entity in the video... (read more)

PDF Abstract CVPR 2017 PDF CVPR 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet