Uplink-aided High Mobility Downlink Channel Estimation over Massive MIMO-OTFS System

16 Mar 2020  ·  Liu Yushan, Zhang Shun, Gao Feifei, Ma Jianpeng, Wang Xianbin ·

Although it is often used in the orthogonal frequency division multiplexing (OFDM) systems, application of massive multiple-input multiple-output (MIMO) over the orthogonal time frequency space (OTFS) modulation could suffer from enormous training overhead in high mobility scenarios. In this paper, we propose one uplink-aided high mobility downlink channel estimation scheme for the massive MIMO-OTFS networks. Specifically, we firstly formulate the time domain massive MIMO-OTFS signal model along the uplink and adopt the expectation maximization based variational Bayesian (EM-VB) framework to recover the uplink channel parameters including the angle, the delay, the Doppler frequency, and the channel gain for each physical scattering path. Correspondingly, with the help of the fast Bayesian inference, one low complex approach is constructed to overcome the bottleneck of the EM-VB. Then, we fully exploit the angle, delay and Doppler reciprocity between the uplink and the downlink and reconstruct the angles, the delays, and the Doppler frequencies for the downlink massive channels at the base station. Furthermore, we examine the downlink massive MIMO channel estimation over the delay-Doppler-angle domain. The channel dispersion of the OTFS over the delay-Doppler domain is carefully analyzed. Various numerical examples are presented to confirm the validity and robustness of the proposed scheme.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here