URM4DMU: an user represention model for darknet markets users

19 Mar 2023  ·  Hongmeng Liu, Jiapeng Zhao, Yixuan Huo, Yuyan Wang, Chun Liao, Liyan Shen, Shiyao Cui, Jinqiao Shi ·

Darknet markets provide a large platform for trading illicit goods and services due to their anonymity. Learning an invariant representation of each user based on their posts on different markets makes it easy to aggregate user information across different platforms, which helps identify anonymous users. Traditional user representation methods mainly rely on modeling the text information of posts and cannot capture the temporal content and the forum interaction of posts. While recent works mainly use CNN to model the text information of posts, failing to effectively model posts whose length changes frequently in an episode. To address the above problems, we propose a model named URM4DMU(User Representation Model for Darknet Markets Users) which mainly improves the post representation by augmenting convolutional operators and self-attention with an adaptive gate mechanism. It performs much better when combined with the temporal content and the forum interaction of posts. We demonstrate the effectiveness of URM4DMU on four darknet markets. The average improvements on MRR value and Recall@10 are 22.5% and 25.5% over the state-of-the-art method respectively.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here