Use of Machine Learning for unraveling hidden correlations between Particle Size Distributions and the Mechanical Behavior of Granular Materials

10 Jun 2020Ignacio G. TejadaPablo Antolin

A data-driven framework was used to predict the macroscopic mechanical behavior of dense packings of polydisperse granular materials. The Discrete Element Method, DEM, was used to generate 92,378 sphere packings that covered many different kinds of particle size distributions, PSD, lying within 2 particle sizes... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.