Using $k$-way Co-occurrences for Learning Word Embeddings

5 Sep 2017  ·  Danushka Bollegala, Yuichi Yoshida, Ken-ichi Kawarabayashi ·

Co-occurrences between two words provide useful insights into the semantics of those words. Consequently, numerous prior work on word embedding learning have used co-occurrences between two words as the training signal for learning word embeddings. However, in natural language texts it is common for multiple words to be related and co-occurring in the same context. We extend the notion of co-occurrences to cover $k(\geq\!\!2)$-way co-occurrences among a set of $k$-words. Specifically, we prove a theoretical relationship between the joint probability of $k(\geq\!\!2)$ words, and the sum of $\ell_2$ norms of their embeddings. Next, we propose a learning objective motivated by our theoretical result that utilises $k$-way co-occurrences for learning word embeddings. Our experimental results show that the derived theoretical relationship does indeed hold empirically, and despite data sparsity, for some smaller $k$ values, $k$-way embeddings perform comparably or better than $2$-way embeddings in a range of tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here