Using of heterogeneous corpora for training of an ASR system

1 Jun 2017  ·  Jan Trmal, Gaurav Kumar, Vimal Manohar, Sanjeev Khudanpur, Matt Post, Paul McNamee ·

The paper summarizes the development of the LVCSR system built as a part of the Pashto speech-translation system at the SCALE (Summer Camp for Applied Language Exploration) 2015 workshop on "Speech-to-text-translation for low-resource languages". The Pashto language was chosen as a good "proxy" low-resource language, exhibiting multiple phenomena which make the speech-recognition and and speech-to-text-translation systems development hard. Even when the amount of data is seemingly sufficient, given the fact that the data originates from multiple sources, the preliminary experiments reveal that there is little to no benefit in merging (concatenating) the corpora and more elaborate ways of making use of all of the data must be worked out. This paper concentrates only on the LVCSR part and presents a range of different techniques that were found to be useful in order to benefit from multiple different corpora

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here