Using Twitter Data to Understand Public Perceptions of Approved versus Off-label Use for COVID-19-related Medications

29 Jun 2022  ·  Yining Hua, Hang Jiang, Shixu Lin, Jie Yang, Joseph M. Plasek, David W. Bates, Li Zhou ·

Understanding public discourse on emergency use of unproven therapeutics is crucial for monitoring safe use and combating misinformation. We developed a natural language processing-based pipeline to comprehend public perceptions of and stances on coronavirus disease 2019 (COVID-19)-related drugs on Twitter over time. This retrospective study included 609,189 US-based tweets from January 29, 2020, to November 30, 2021, about four drugs that garnered significant public attention during the COVID-19 pandemic: (1) Hydroxychloroquine and Ivermectin, therapies with anecdotal evidence; and (2) Molnupiravir and Remdesivir, FDA-approved treatments for eligible patients. Time-trend analysis was employed to understand popularity trends and related events. Content and demographic analyses were conducted to explore potential rationales behind people's stances on each drug. Time-trend analysis indicated that Hydroxychloroquine and Ivermectin were discussed more than Molnupiravir and Remdesivir, particularly during COVID-19 surges. Hydroxychloroquine and Ivermectin discussions were highly politicized, related to conspiracy theories, hearsay, and celebrity influences. The distribution of stances between the two major US political parties was significantly different (P < .001); Republicans were more likely to support Hydroxychloroquine (55%) and Ivermectin (30%) than Democrats. People with healthcare backgrounds tended to oppose Hydroxychloroquine (7%) more than the general population, while the general population was more likely to support Ivermectin (14%). Our study found that social media users have varying perceptions and stances on off-label versus FDA-authorized drug use at different stages of COVID-19. This indicates that health systems, regulatory agencies, and policymakers should design tailored strategies to monitor and reduce misinformation to promote safe drug use.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here