Risk Estimation in a Markov Cost Process: Lower and Upper Bounds

17 Oct 2023  ·  Gugan Thoppe, L. A. Prashanth, Sanjay Bhat ·

We tackle the problem of estimating risk measures of the infinite-horizon discounted cost within a Markov cost process. The risk measures we study include variance, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR). First, we show that estimating any of these risk measures with $\epsilon$-accuracy, either in expected or high-probability sense, requires at least $\Omega(1/\epsilon^2)$ samples. Then, using a truncation scheme, we derive an upper bound for the CVaR and variance estimation. This bound matches our lower bound up to logarithmic factors. Finally, we discuss an extension of our estimation scheme that covers more general risk measures satisfying a certain continuity criterion, e.g., spectral risk measures, utility-based shortfall risk. To the best of our knowledge, our work is the first to provide lower and upper bounds for estimating any risk measure beyond the mean within a Markovian setting. Our lower bounds also extend to the infinite-horizon discounted costs' mean. Even in that case, our lower bound of $\Omega(1/\epsilon^2) $ improves upon the existing $\Omega(1/\epsilon)$ bound [13].

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here