Variable Radiance Field for Real-Life Category-Specifc Reconstruction from Single Image

8 Jun 2023  ·  Kun Wang, Zhiqiang Yan, Zhenyu Zhang, Xiang Li, Jun Li, Jian Yang ·

Reconstructing category-specific objects from a single image is a challenging task that requires inferring the geometry and appearance of an object from a limited viewpoint. Existing methods typically rely on local feature retrieval based on re-projection with known camera intrinsic, which are slow and prone to distortion at viewpoints distant from the input image. In this paper, we present Variable Radiance Field (VRF), a novel framework that can efficiently reconstruct category-specific objects from a single image without known camera parameters. Our key contributions are: (1) We parameterize the geometry and appearance of the object using a multi-scale global feature extractor, which avoids frequent point-wise feature retrieval and camera dependency. We also propose a contrastive learning-based pretraining strategy to improve the feature extractor. (2) We reduce the geometric complexity of the object by learning a category template, and use hypernetworks to generate a small neural radiance field for fast and instance-specific rendering. (3) We align each training instance to the template space using a learned similarity transformation, which enables semantic-consistent learning across different objects. We evaluate our method on the CO3D dataset and show that it outperforms existing methods in terms of quality and speed. We also demonstrate its applicability to shape interpolation and object placement tasks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods