Variance Reduction for Faster Non-Convex Optimization

17 Mar 2016  ·  Zeyuan Allen-Zhu, Elad Hazan ·

We consider the fundamental problem in non-convex optimization of efficiently reaching a stationary point. In contrast to the convex case, in the long history of this basic problem, the only known theoretical results on first-order non-convex optimization remain to be full gradient descent that converges in $O(1/\varepsilon)$ iterations for smooth objectives, and stochastic gradient descent that converges in $O(1/\varepsilon^2)$ iterations for objectives that are sum of smooth functions. We provide the first improvement in this line of research. Our result is based on the variance reduction trick recently introduced to convex optimization, as well as a brand new analysis of variance reduction that is suitable for non-convex optimization. For objectives that are sum of smooth functions, our first-order minibatch stochastic method converges with an $O(1/\varepsilon)$ rate, and is faster than full gradient descent by $\Omega(n^{1/3})$. We demonstrate the effectiveness of our methods on empirical risk minimizations with non-convex loss functions and training neural nets.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here