Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models

The learning and evaluation of energy-based latent variable models (EBLVMs) without any structural assumptions are highly challenging, because the true posteriors and the partition functions in such models are generally intractable. This paper presents variational estimates of the score function and its gradient with respect to the model parameters in a general EBLVM, referred to as VaES and VaGES respectively. The variational posterior is trained to minimize a certain divergence to the true model posterior and the bias in both estimates can be bounded by the divergence theoretically. With a minimal model assumption, VaES and VaGES can be applied to the kernelized Stein discrepancy (KSD) and score matching (SM)-based methods to learn EBLVMs. Besides, VaES can also be used to estimate the exact Fisher divergence between the data and general EBLVMs.

PDF Abstract NeurIPS Workshop 2020 PDF NeurIPS Workshop 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here