Variational hybridization and transformation for large inaccurate noisy-or networks

20 May 2016  ·  Yusheng Xie, Nan Du, Wei Fan, Jing Zhai, Weicheng Zhu ·

Variational inference provides approximations to the computationally intractable posterior distribution in Bayesian networks. A prominent medical application of noisy-or Bayesian network is to infer potential diseases given observed symptoms. Previous studies focus on approximating a handful of complicated pathological cases using variational transformation. Our goal is to use variational transformation as part of a novel hybridized inference for serving reliable and real time diagnosis at web scale. We propose a hybridized inference that allows variational parameters to be estimated without disease posteriors or priors, making the inference faster and much of its computation recyclable. In addition, we propose a transformation ranking algorithm that is very stable to large variances in network prior probabilities, a common issue that arises in medical applications of Bayesian networks. In experiments, we perform comparative study on a large real life medical network and scalability study on a much larger (36,000x) synthesized network.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here