Vector Optimization with Stochastic Bandit Feedback

23 Oct 2021  ·  Çağın Ararat, Cem Tekin ·

We introduce vector optimization problems with stochastic bandit feedback, in which preferences among designs are encoded by a polyhedral ordering cone $C$. Our setup generalizes the best arm identification problem to vector-valued rewards by extending the concept of Pareto set beyond multi-objective optimization. We characterize the sample complexity of ($\epsilon,\delta$)-PAC Pareto set identification by defining a new cone-dependent notion of complexity, called the ordering complexity. In particular, we provide gap-dependent and worst-case lower bounds on the sample complexity and show that, in the worst-case, the sample complexity scales with the square of ordering complexity. Furthermore, we investigate the sample complexity of the na\"ive elimination algorithm and prove that it nearly matches the worst-case sample complexity. Finally, we run experiments to verify our theoretical results and illustrate how $C$ and sampling budget affect the Pareto set, the returned ($\epsilon,\delta$)-PAC Pareto set, and the success of identification.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here