NetTraj: A Network-based Vehicle Trajectory Prediction Model with Directional Representation and Spatiotemporal Attention Mechanisms

21 Jun 2021  ·  Yuebing Liang, Zhan Zhao ·

Trajectory prediction of vehicles in city-scale road networks is of great importance to various location-based applications such as vehicle navigation, traffic management, and location-based recommendations. Existing methods typically represent a trajectory as a sequence of grid cells, road segments or intention sets. None of them is ideal, as the cell-based representation ignores the road network structures and the other two are less efficient in analyzing city-scale road networks. Moreover, previous models barely leverage spatial dependencies or only consider them at the grid cell level, ignoring the non-Euclidean spatial structure shaped by irregular road networks. To address these problems, we propose a network-based vehicle trajectory prediction model named NetTraj, which represents each trajectory as a sequence of intersections and associated movement directions, and then feeds them into a LSTM encoder-decoder network for future trajectory generation. Furthermore, we introduce a local graph attention mechanism to capture network-level spatial dependencies of trajectories, and a temporal attention mechanism with a sliding context window to capture both short- and long-term temporal dependencies in trajectory data. Extensive experiments based on two real-world large-scale taxi trajectory datasets show that NetTraj outperforms the existing state-of-the-art methods for vehicle trajectory prediction, validating the effectiveness of the proposed trajectory representation method and spatiotemporal attention mechanisms.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.