VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem

29 Jan 2017  ·  Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, Niki Trigoni ·

In this paper we present an on-manifold sequence-to-sequence learning approach to motion estimation using visual and inertial sensors. It is to the best of our knowledge the first end-to-end trainable method for visual-inertial odometry which performs fusion of the data at an intermediate feature-representation level. Our method has numerous advantages over traditional approaches. Specifically, it eliminates the need for tedious manual synchronization of the camera and IMU as well as eliminating the need for manual calibration between the IMU and camera. A further advantage is that our model naturally and elegantly incorporates domain specific information which significantly mitigates drift. We show that our approach is competitive with state-of-the-art traditional methods when accurate calibration data is available and can be trained to outperform them in the presence of calibration and synchronization errors.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here