Virtual Control Contraction Metrics: Convex Nonlinear Feedback Design via Behavioral Embedding

18 Mar 2020  ·  Ruigang Wang, Roland Tóth, Patrick J. W. Koelwijn, Ian R. Manchester ·

This paper presents a systematic approach to nonlinear state-feedback control design that has three main advantages: (i) it ensures exponential stability and $ \mathcal{L}_2 $-gain performance with respect to a user-defined set of reference trajectories, and (ii) it provides constructive conditions based on convex optimization and a path-integral-based control realization, and (iii) it is less restrictive than previous similar approaches. In the proposed approach, first a virtual representation of the nonlinear dynamics is constructed for which a behavioral (parameter-varying) embedding is generated. Then, by introducing a virtual control contraction metric, a convex control synthesis formulation is derived. Finally, a control realization with a virtual reference generator is computed, which is guaranteed to achieve exponential stability and $ \mathcal{L}_2 $-gain performance for all trajectories of the targeted reference behavior. We show that the proposed methodology is a unified generalization of the two distinct categories of linear-parameter-varying (LPV) state-feedback control approaches: global and local methods. Moreover, it provides rigorous stability and performance guarantees as a method for nonlinear tracking control, while such properties are not guaranteed for tracking control using standard LPV approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here