Vis-Eval Metric Viewer: A Visualisation Tool for Inspecting and Evaluating Metric Scores of Machine Translation Output

NAACL 2018  ·  David Steele, Lucia Specia ·

Machine Translation systems are usually evaluated and compared using automated evaluation metrics such as BLEU and METEOR to score the generated translations against human translations. However, the interaction with the output from the metrics is relatively limited and results are commonly a single score along with a few additional statistics... Whilst this may be enough for system comparison it does not provide much useful feedback or a means for inspecting translations and their respective scores. VisEval Metric Viewer VEMV is a tool designed to provide visualisation of multiple evaluation scores so they can be easily interpreted by a user. VEMV takes in the source, reference, and hypothesis files as parameters, and scores the hypotheses using several popular evaluation metrics simultaneously. Scores are produced at both the sentence and dataset level and results are written locally to a series of HTML files that can be viewed on a web browser. The individual scored sentences can easily be inspected using powerful search and selection functions and results can be visualised with graphical representations of the scores and distributions. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here