Visual Relation Grounding in Videos

In this paper, we explore a novel task named visual Relation Grounding in Videos (vRGV). The task aims at spatio-temporally localizing the given relations in the form of subject-predicate-object in the videos, so as to provide supportive visual facts for other high-level video-language tasks (e.g., video-language grounding and video question answering)... (read more)

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet