ViT-Calibrator: Decision Stream Calibration for Vision Transformer

10 Apr 2023  ·  Lin Chen, Zhijie Jia, Tian Qiu, Lechao Cheng, Jie Lei, Zunlei Feng, Mingli Song ·

A surge of interest has emerged in utilizing Transformers in diverse vision tasks owing to its formidable performance. However, existing approaches primarily focus on optimizing internal model architecture designs that often entail significant trial and error with high burdens. In this work, we propose a new paradigm dubbed Decision Stream Calibration that boosts the performance of general Vision Transformers. To achieve this, we shed light on the information propagation mechanism in the learning procedure by exploring the correlation between different tokens and the relevance coefficient of multiple dimensions. Upon further analysis, it was discovered that 1) the final decision is associated with tokens of foreground targets, while token features of foreground target will be transmitted into the next layer as much as possible, and the useless token features of background area will be eliminated gradually in the forward propagation. 2) Each category is solely associated with specific sparse dimensions in the tokens. Based on the discoveries mentioned above, we designed a two-stage calibration scheme, namely ViT-Calibrator, including token propagation calibration stage and dimension propagation calibration stage. Extensive experiments on commonly used datasets show that the proposed approach can achieve promising results. The source codes are given in the supplements.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here