VLAD3: Encoding Dynamics of Deep Features for Action Recognition

Previous approaches to action recognition with deep features tend to process video frames only within a small temporal region, and do not model long-range dynamic information explicitly. However, such information is important for the accurate recognition of actions, especially for the discrimination of complex activities that share sub-actions, and when dealing with untrimmed videos. Here, we propose a representation, VLAD for Deep Dynamics (VLAD^3), that accounts for different levels of video dynamics. It captures short-term dynamics with deep convolutional neural network features, relying on linear dynamic systems (LDS) to model medium-range dynamics. To account for long-range inhomogeneous dynamics, a VLAD descriptor is derived for the LDS and pooled over the whole video, to arrive at the final VLAD^3 representation. An extensive evaluation was performed on Olympic Sports, UCF101 and THUMOS15, where the use of the VLAD^3 representation leads to state-of- the-art results.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here