Volumetric 3D Point Cloud Attribute Compression: Learned polynomial bilateral filter for prediction

22 Nov 2023  ·  Tam Thuc Do, Philip A. Chou, Gene Cheung ·

We extend a previous study on 3D point cloud attribute compression scheme that uses a volumetric approach: given a target volumetric attribute function $f : \mathbb{R}^3 \mapsto \mathbb{R}$, we quantize and encode parameters $\theta$ that characterize $f$ at the encoder, for reconstruction $f_{\hat{\theta}}(\mathbf(x))$ at known 3D points $\mathbf(x)$ at the decoder. Specifically, parameters $\theta$ are quantized coefficients of B-spline basis vectors $\mathbf{\Phi}_l$ (for order $p \geq 2$) that span the function space $\mathcal{F}_l^{(p)}$ at a particular resolution $l$, which are coded from coarse to fine resolutions for scalability. In this work, we focus on the prediction of finer-grained coefficients given coarser-grained ones by learning parameters of a polynomial bilateral filter (PBF) from data. PBF is a pseudo-linear filter that is signal-dependent with a graph spectral interpretation common in the graph signal processing (GSP) field. We demonstrate PBF's predictive performance over a linear predictor inspired by MPEG standardization over a wide range of point cloud datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods