Warp: a method for neural network interpretability applied to gene expression profiles

16 Aug 2017Trofimov AssyaLemieux SebastienPerreault Claude

We show a proof of principle for warping, a method to interpret the inner working of neural networks in the context of gene expression analysis. Warping is an efficient way to gain insight to the inner workings of neural nets and make them more interpretable... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet