Wasserstein barycenters are NP-hard to compute

4 Jan 2021  ·  Jason M. Altschuler, Enric Boix-Adsera ·

Computing Wasserstein barycenters (a.k.a. Optimal Transport barycenters) is a fundamental problem in geometry which has recently attracted considerable attention due to many applications in data science. While there exist polynomial-time algorithms in any fixed dimension, all known running times suffer exponentially in the dimension. It is an open question whether this exponential dependence is improvable to a polynomial dependence. This paper proves that unless P=NP, the answer is no. This uncovers a "curse of dimensionality" for Wasserstein barycenter computation which does not occur for Optimal Transport computation. Moreover, our hardness results for computing Wasserstein barycenters extend to approximate computation, to seemingly simple cases of the problem, and to averaging probability distributions in other Optimal Transport metrics.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here