Wasserstein Soft Label Propagation on Hypergraphs: Algorithm and Generalization Error Bounds

6 Sep 2018  ·  Tingran Gao, Shahab Asoodeh, Yi Huang, James Evans ·

Inspired by recent interests of developing machine learning and data mining algorithms on hypergraphs, we investigate in this paper the semi-supervised learning algorithm of propagating "soft labels" (e.g. probability distributions, class membership scores) over hypergraphs, by means of optimal transportation. Borrowing insights from Wasserstein propagation on graphs [Solomon et al. 2014], we re-formulate the label propagation procedure as a message-passing algorithm, which renders itself naturally to a generalization applicable to hypergraphs through Wasserstein barycenters. Furthermore, in a PAC learning framework, we provide generalization error bounds for propagating one-dimensional distributions on graphs and hypergraphs using 2-Wasserstein distance, by establishing the \textit{algorithmic stability} of the proposed semi-supervised learning algorithm. These theoretical results also shed new lights upon deeper understandings of the Wasserstein propagation on graphs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here