WavCraft: Audio Editing and Generation with Large Language Models

We introduce WavCraft, a collective system that leverages large language models (LLMs) to connect diverse task-specific models for audio content creation and editing. Specifically, WavCraft describes the content of raw audio materials in natural language and prompts the LLM conditioned on audio descriptions and user requests. WavCraft leverages the in-context learning ability of the LLM to decomposes users' instructions into several tasks and tackle each task collaboratively with the particular module. Through task decomposition along with a set of task-specific models, WavCraft follows the input instruction to create or edit audio content with more details and rationales, facilitating user control. In addition, WavCraft is able to cooperate with users via dialogue interaction and even produce the audio content without explicit user commands. Experiments demonstrate that WavCraft yields a better performance than existing methods, especially when adjusting the local regions of audio clips. Moreover, WavCraft can follow complex instructions to edit and create audio content on the top of input recordings, facilitating audio producers in a broader range of applications. Our implementation and demos are available at this https://github.com/JinhuaLiang/WavCraft.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here